线性回归——PyTorch版代码

导入PyTorch包

1
2
3
4
5
6
7
8
import torch
from torch import nn
import numpy as np

torch.manual_seed(1) #设置随机数种子

print(torch.__version__) #查看PyTorch版本
torch.set_default_tensor_type('torch.FloatTensor')#设置默认的向量类型

生成数据集

1
2
3
4
5
6
7
8
9
10
11
#生成数据集

num_inputs = 2
num_examples = 1000

true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

读取数据集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#读取数据集
import torch.utils.data as Data

batch_size = 10

# combine featues and labels of dataset
dataset = Data.TensorDataset(features, labels)

# put dataset into DataLoader
data_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # whether shuffle the data or not
num_workers=2, # read data in multithreading
)
for X, y in data_iter:
print(X, '\n', y)
break

定义模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#定义模型
class LinearNet(nn.Module):
def __init__(self, n_feature):
super(LinearNet, self).__init__() # call father function to init
self.linear = nn.Linear(n_feature,
1) # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`

def forward(self, x):
y = self.linear(x)
return y

net = LinearNet(num_inputs)
print(net)
# ways to init a multilayer network
#添加网络层的三种方法
# method one #
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# other layers can be added here
)

# method two
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......

# method three
from collections import OrderedDict

net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))

print(net)
print(net[0])

初始化模型参数

1
2
3
4
5
6
7
#初始化模型参数
from torch.nn import init

init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0) # or you can use `net[0].bias.data.fill_(0)` to modify it directly
for param in net.parameters():
print(param)

定义损失函数

1
2
3
#定义损失函数
loss = nn.MSELoss() # nn built-in squared loss function
# function prototype: `torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')`

定义优化函数

1
2
3
4
5
#定义优化函数
import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03) # built-in random gradient descent function
print(optimizer) # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)`

训练

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#训练
num_epochs = 3
for epoch in range(1, num_epochs + 1):
for X, y in data_iter:
output = net(X)
l = loss(output, y.view(-1, 1))
optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
l.backward()
optimizer.step()
print('epoch %d, loss: %f' % (epoch, l.item()))
# result comparision
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)

总结

看着浅显易懂,并且没有TensorFlow那么复杂。

0%